Development of a Tree Climbing Snake Robot

<u>Team 10</u>

Jorge Campa Michelle Maggiore Justin Morales

Esteban Szalay

Advisor Dr. Jonathan Clark

Instructors

Dr. Nikhil Gupta Dr. Chiang Shih

Sponsor Jeff Phipps

Agenda

- Project Scope
 - Define Problem
 - Focus on solution
- Background Research
 - Existing robots and actuators
- Concept Generation
 - Creating and selecting a design
- Future Plans

Concept Generation

Future Plans

Summary

What is the Problem?

- Old trees may fall at any moment
- Removing tall trees should be done by professionals
 - Requires specific skills and precision
 - 200 tree-related fatal injuries every year [1]
- Homeowner's insurance
 - \$500-\$1,000 for removing fallen trees
 - Healthy vs. Dead trees
- Car insurance
 - Only with Comprehensive insurance

Concept Generation

Future Plans

Summary

Tree Removal Services

- Removing Process:
 - De-limbing on the way up
 - Cutting small segments on way down
 - Cut at base once at reasonable height
- Price ranges from \$150-\$1,500
 - Complexity
 - Height of tree
- Focus on pine trees
 - Average Diameter: 2.5 ft
 - Height: +100 ft
 - Age: 250 years

Project Definition

- Need Statement:
 - The removal of trees is too technical and dangerous for the average person.
- Goal Statement:
 - Build a remotely operated snake-like robot that will safely climb trees.
- Scope:
 - To climb a tree, in a helical manner, carrying a payload for future iterations.

Objectives

Table 1. Project Objectives with Descriptions						
Characteristic Description						
Good Grip	Length of snake must be at least 1.5 times the circumference of the tree					
Good Range of Communication	Remote must be able to communicate with snake up to 60 ft					
Climbing Speed	Snake must be able to climb tree at a reasonable speed					
Durability	Must be made of a material strong enough to withstand damage					
Climbing Power	Must be able to climb the tree with a 20 lb payload					

Constraints

Table 2. Project Constraints with Descriptions
--

Constraint	Description				
Remote Controlled	Snake is controlled by user on ground via a remote				
Camera	Camera must give user feedback of the snake's environment				
Power Source	It must operate on a rechargeable battery				
Lightweight	Robot is light enough to overcome dynamic forces				
Climbing Method	Robot must climb tree in a helical path				

Background Research

Concept Generation

Future Plans

Summary

HOQ

Figure 1. House of Quality detailing rank of importance of the engineering characteristics

			1		/	\frown			
Legend					\rightarrow				
0	No correlation		\checkmark						
3	Lov	v correlation			$/ \setminus$ /	$/ \setminus /$	\sim		
6	Medi	um Correlation			、+ ×	\mathbf{X}	、+ 入	<	
9	Hig	h Correlation		\wedge +	\sim	\searrow	\times +	\searrow	
+	Weak d	lirect correlation		$/$ \setminus	/		$\langle \mathbf{n} $		
++	Strong	direct correlation		$\langle + \rangle$	$+\times$	_++×	\setminus \land	、+ 入	
			\land	+-	+ +	+ +-	+ + +	+	·
					Engineerin	g Characte	ristics (EC)		
Requirem	omer nents (CR)	Customer Importance (CI)	Wheel Type	Strength of Material	Weight	Gripping Mechanism	Power Consumption	Distance of Communication	Environmental Awareness
	le Batteries	5			3		9		
-	To use	6	3		6	6		3	6
	lient	5	6	9		6		6	9
	bility	7					9	9	9
	iendly	7				3	6	9	3
Clim	nbing	10	9	3	9	9	9	3	6
Safe 10		6	9	6	9		3	3	
		Score	198	165	201	267	240	234	255
		Relative Weight	12.7	10.6	12.9	17.1	15.4	15.0	16.3
		Rank	6	7	5	1	3	4	2

Background Research

Concept Generation

Future Plans

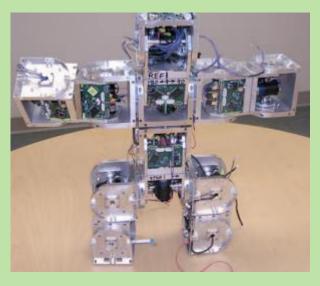
Summary

Types of Existing Non-Snake Robots

- Treebot
- Wheel climbers
- Pole like climber
- RISE

Michelle Maggiore

Concept Generation


Future Plans

Summary

Types of Snake Robots

- Lattice
 - Reconfigurable
- String type
 - Modular

Michelle Maggiore

Summary

Pneumatics

• Pros

- Uses air pressure to create mechanical energy
- Reversible directions
- Lightweight
- Doesn't overheat with being overworked
- No reservoir
- Cons
 - Cannot exert as much force as hydraulics
 - Air is compressible

Hydraulics

• Pros

- Can exert large forces
- Fluid used is not compressible
- Controlled motions

• Cons

- Slow
- Potential environmental harm
- Needs a reservoir to store fluid

Morphological Chart

Table 3.1 Morphological Chart with Concept Development

Requirements	Functional Parameters	Concepts or Solutions						
	Wheels	Spiked Wheels	Continuous Track					
Climb Trees Clamping		Pneumatic	Motor	Hydraulics				
	Construction Type	Single Segment	Modular					
Durable	Material	Reinforced Fibers	Aluminum	Steel				
	Communication Wireless		Wired					
Ease of use	Transportation	Self Moving	Carried to tree					
	Power input	Wired	Disposable Battery	Rechargeable Battery				

Concept Generation

Future Plans

Summary

Design 1 - Selection

Table 3.2. Design 1								
Requirements	Functional Parameters	Concepts or Solutions						
	Wheels	Spiked Wheels	Rubber Wheels	Continuous Track				
Climb Trees	Clamping	Pneumatic	• Motor	Hydraulics				
	Construction Type	Single Segment	Modular					
Durable	Material	Reinforced Fibers	- Aluminum	Steel				
	Communication	• Wireless	Wired					
Ease of use	Transportation	Self Moving	Carried to tree					
	Power input	Wired	Disposable Battery	Rechargeable Battery				

Esteban Szalay

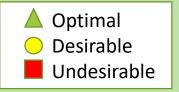

Design 2 - Selection

Table 3.3. Design 2							
Requirements	Functional Parameters	Concepts or Solutions					
	Wheels	Spiked Wheels	Rubber Wheels	Continuous Track			
Climb Trees	Clamping	Pneumatic	Motor	Hydraulics			
	Construction Type	Single Segment	Modular				
Durable	Material	Reinforced Fibers	Aluminum	Steel			
	Communication	• Wireless	Wired				
Ease of use	Transportation	Self Moving	Carried to tree				
	Power input	Wired	Disposable Battery	Rechargeable Battery			

Concept Selection

Table 3.4. Point system for decision matrix.

Requirements	Functional Parameters	Concepts or Solutions					
	Wheels	▲ Spiked Wheels	Rubber Wheels Continuous Track				
Climb Trees	Clamping	A Pneumatic	▲ Motor → Hydraulics				
	Construction Type	Single Segment	▲ Modular				
Durable	Material	O Reinforced Fibers	O Aluminum O Steel				
	Communication	▲ Wireless	O Wired				
Ease of use	Transportation	▲ Self Moving	Carried to tree				
	Power input	O Wired	Disposable Battery ARechargeable Battery				

Concept Selection – Pugh Matrix

• <u>Design 1</u> Motorized Modular Aluminum Snake

• <u>Design 2</u>

Soft Actuated Fiber Snake

Table 4. Pugh Matrix for selecting a design

Concept	Base Design 1		Design 2
Wheels	0	1	1
Clamping	0	1	1
Construction Type	0	1	0
Material	0	0	0
Communication	0	1	1
Transportation	0	0	0
Power Input	0	1	1
Score	0	5	4

Summary

Design 1 – Motorized Modular Aluminum Snake

• Pros:

- Motors Should provide good, adaptable grip.
 Familiar and easy to set up and purchase.
- Aluminum Lightweight. Strength of 40,000psi [9].
- Modularity Variable Length.
- Cons:
 - Modularity Have to apply force to keep in helical shape. Cost increases with each module.
 - Aluminum Stiff. Forces applied may cause permanent deformation.

Concept Generation

Future Plans

Summary

Design 2 – Soft Actuated Fiber Snake

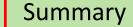
- Pros:
 - Soft Actuated Naturally wraps around in a helical shape.
 - Soft Fiber Ultra Lightweight. Flexible.
 - Single Segment Easy to build.
- Cons:
 - Soft Actuated Have to make ourselves (can't be purchased off the shelf).
 - Single Segment Fixed Length. Invariable and may need several models to adapt to trees.

Project Scope Background Research

Concept Generation

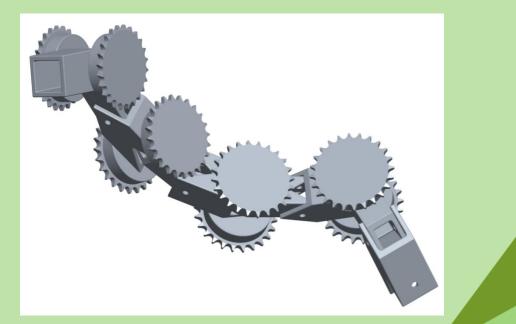
Future Plans

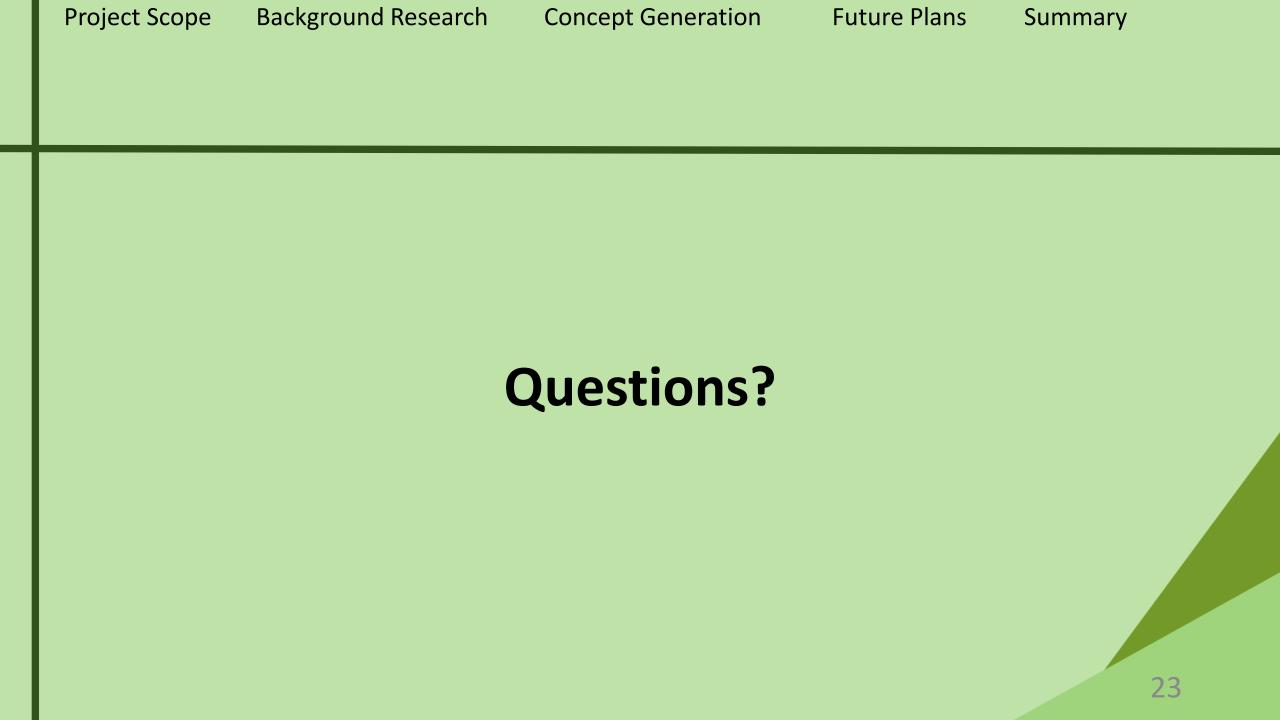
Summary


Design 1 and Design 2 – Comparison

- Circumference $=\pi d$
- Average Diameter: 2.5 ft
 - Circumference = $(2.5 \text{ ft})^* \pi$
- Length = 1.5 * Circumference ~ 12ft

Oct				Nov					Dec	
Oct 2 Oct 9 Oct 16	Oct 23	Oct 30	Nov 6	Nov 13	Nov 20	Nov	27	Dec 4	Dec 11	Dec
							- Pr	roject Backgr	ound	
						Backgro	bund	Research		
Market Research										
	Actor Selection	1								
	Vheel Placeme	ent								
	Soft Actuation									
	orce Simulatic	n for Grippir	g Mechanisr	n						
	Simulate Mobili	ty of Prototy	ре							
		C	ontrollers							
		Co	ontrolling Mul	tiple Degree	of Freedom	Robot				
			Analysis	s of Compon	ents					
				Design	of Stress An	alysis				
						Materia	Sele	ection		
Concept Generation	n				-					
								Prototypes		
	Prototype Prop	osal								
	Bu	ild Approved	Prototype							
		Test Mo	bility of Built	Prototypes						
			Modify	y Tested Pro	totype					
				Deta	ailed Design	of Modi	fied F	rototype		
					Simulat	e Detai	led D	esign		
								Finalize Deta	iled Design	


Michelle Maggiore



Summary

• Goal Statement:

- Build a remotely operated snake-like robot that will safely climb trees.
- Design Idea
 - Motorized Modular Aluminum Snake
 - Add pneumatics
- Future Plans
 - More research
 - Prototype

References

[1] US Bureau of Labor Statistics

[2] T. L. Lam and Y. Xu, "A flexible tree climbing robot: Treebot - design and implementation," in Robotics and Automation (ICRA), 2011 IEEE International Conference on, May 2011, pp. 5849–5854.

[3] D. Ren, S. Yang, G. Yan, and Y. Zhang, "Study on a novel wheel type tree-climbing robot," in Computational Intelligence and Design (ISCID), 2014 Seventh International Symposium on, vol. 1, Dec 2014, pp. 150–153.

[4] M. I. N. Faizal, W. A. F. W. Othman, and S. S. N. A. S. Hassan, "Development of pole-like tree climbing robot," in 2015 IEEE International Conference on Control System, Computing and Engineering (ICCSCE), Nov 2015, pp. 224–229.

[5] "RISE: The Amazing Climbing Robot". Boston Dynamics, 2016. Web. Oct 2016.

[6] M. Yim, W. m. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson, E. Klavins, and G. S. Chirikjian, "Modular self-reconfigurable robot systems [grand challenges of robotics]," IEEE Robotics Automation Magazine, vol. 14, no. 1, pp. 43–52, March 2007

[7] C. Wright, A. Johnson, A. Peck, Z. McCord, A. Naaktgeboren, P. Gianfortoni, M. Gonzalez-Rivero, R. Hatton, and H. Choset, "Design of a modular snake robot," in 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, Oct 2007, pp. 2609–2614.

[8] F. Enner, D. Rollinson, and H. Choset, "Simplified motion modeling for snake robots," in Robotics and Automation (ICRA), 2012 IEEE International Conference on, May 2012, pp. 4216–4221.

[9] Aerospace Specifications Metal Inc. Website http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MA6061t6